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M 
SUMMARY 

The procedure for computing the signal-to-noise ratio of radar 

echoes from the sun is outlined.^a^-Uiis-cepoit.  The radial distribution 

of electron density in the corona, the coronal temperature, solar noise, 

galactic noise, and radar-system parameters are taken into account. 

Examples are given of computations for two solar radar systems that 

will soon be in operation. 

* 
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I.  INTRODUCTION 

The first radar contact with the sun [Ref. 1] was made in April 

1959«  This success marked the beginning of solar radar astronomy, a 

promising new approach to the study of the solar corona.  Some charac- 

teristics which may be measured by radar are:  (l)  the rate of rotation 

of the corona; (2) the change of the coronal structure with various 

types of solar activity; (3) the absorption characteristics of the 

corona; (k)  the roughness and mass motion of the corona; (5) the effects 

of local and general solar magnetic fields.  In this report are pre- 

sented the steps for computing the signal-to-noise ratio of radar echoes 

from the sun, and examples are given using the parameters of several 

new solar radar systems. The results give us a rough estimate of the 

sensitivity of these systems under various conditions, and hence an 

indication of our ability to measure some of the solar parameters 

listed above, 

II.  ASSUMPTIONS AND COMPUTATIONAL PROCEDURE 

In the following computations of the radar cross section of the 

sun, it is assumed that; 

1. The corona is a fully ionized region, and its electron density 

distribution is given by the Allen-Baumbach equation multiplied 

by a factor n (a numeric): 

N = n 10lk  (1.55 p"6 - 2.99 p'16) electrons/m3. 

where  p  is the radial distance in units of the solar optical 

radius R^ measured from the center of the sun,  The range of n 

is approximately from 0.5 to 10, its value depending on solar 

activity,, 

2. The corona is isothermal at assumed electron temperatures from 

5 x 10 0K to 3 x 10 0K.  This range of temperature is based on 

solar radio-astronomy observations. 

3. The corona is spherically symmetric and has a smooth reflecting 



surface (i.e., directivity = l). Kerf [Ref. 2] suggests a diree- 

tivity of k  "because of probable roughness of the contours of con- 

stant density. A precise evaluation of this effect must await 

careful radar studiesj therefore, the pessimistic assumption of a 

directivity of 1 will be used here. 

%. An average value of the galactic noise is used.  Actually, of 

course, the galactic noise ts higher than average toward the center 

of the galaxy and lower toward the poles. 

5. Solar noise is considered under quiet solar conditions. 

6. Magnetic-field effects from both the sun and the earth are 

neglected. 

7- Solar and galactic noise is greater than atmospheric and man-made 

noise in the frequency range from 20 to 60 Mc. 

With the above assumptions, the following quantities are computed 

in the indicated order: 

!• Optical depth, T 

2. Central-ray turning point, p 

3- Radar cross section, a 

*f. Solar apparent temperature, T 
a 

5- Echo power intercepted by the receiving antenna, P 
, r 
D. Galactic noise, P 

g 
7- Solar noise, P 

s 
8. Band width, ^f 

9- Signal-to-noise ratio, S/N. 

These quantities are discussed individually below. 

A.  OPTICAL DEPTH, T 

The optical depth T along a trajectory S is defined by 

■/ 
K ds, (1) 

o 

[Ref.   3],   where     R     is  the  absorption coefficient of the  medium in which 

the  ray travels.     From the  Lorentz  theory,   we  have 
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where 

vx 
* = 5JT; nepers/meter 

c  = velocity of light, 

M = refractic   inciex =   [1  .(f 2/f2)-]^/2 

2,2 v o '  'J   ' 
x = f0Vf , 

-0 = plasma frequency = (e2N/W2€ tn)1/2 
-P       ^ '    o /   ^ 
i = wave frequency, 

e = electron charge, 

N = density of electrons, 

m = electron mass, and 

v = frequency of collisions of elestrons with ions 

(2) 

4 
= — e 

3 L2m(kT )- 

1/2 

Z ^ A1(2), (3) 

where 

k = Boltzmann's constant, 

Te = electron kinetic temperature, 

Z = degree of ionization, and 

^ = positive-ion density. 

It seems quite adequate for our purpose to assume the solar atmosphere 

to be fully ionized hydrogen, so that N. = N and Z = 1.  A (2) is 
given by 1 1  ' 

> To Earth 

Photosphere 

FIG   1    RAV TRAJECTORY IN THE SOLAR CORONA 
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[Ref.   kj.    A, (2)   is  a slowly varying function of density and tempera- 

ture,   and,  to a good degree of approximation,   it can be expressed as 

1+ k T 
A   (2) ~ 2  £n 2

e  j 

15.567 + 2  -tfn T     - 
!in K

- (5) 

then Eq.   (3)  reduces to 

1.816 N 

The term    ds    CSKI be expressed as 

ds  = R     [(dp)2 +   p2(d0)2]l/2 
(6) 

in polar  coordinates whose origin is located at the center of the sun 

(Fig.  1). 

Therefore,   Eq.   (l)  can be written as 

v-x. 
T  = 

*ß  -   (a2/p2)' 
dp (7) 

and Eq.   (7)   can be  reduced as 

Te,n\        5.193 x  10    ^(2)   f2 /        n 

7J 

h - 



[Ref. 5], where  . i(a,n/f )  is the integral part of the optical depth. 

The values of A.^2) and l(a, n/f ) have been replotted in Figs. 2 

and 3 [Ref. 6]. 

The method of evaluating the optical depth through the corona is 

as follows: 

1. Choose the wave frequency f (Mc) and a density multiplier n. 
o 

2. Form the parameter n/f  for the values chosen in item 1. 

3» Choose the ray path in terms of a.  In our calculation a was 

chosen for the central ray, i.e., a = 0. 

h.   Find values of I from Fig. 2 for the selected values of at and 

5. Choose an assumed coronal temperature T . 
e 

6. Determine A1<2)  from the curves in Fig. 3 for the selected 

values of T , n, and f. 
e7  ' 

With the above procedure, three sets of curves were drawn in 

Fig. k,   with T vs f for Te = 5 x 10
5, 10 , and 3 x 106 0K and 

n = 0.5, 1, 2, 5, and 10.  Several conclusions are apparent from the 

curves. 

increases, T decreases,     TQC 

increases, T increases,     TOC n 

increases, T increases,     TOC f 

Increases, T decreases. 

Result U will be shown in later calculations and indicates that the 

corona is optically thin for large a. 

1. As T 
e 

2. As n 

3- As  f 

'4. As a 

T "3/2 
J-e 

3/2 

B.  TURNING POINT, p ,  OF THE CENTRAL RAY 

The refractive index ^i  in a medium containing N free 

electrons/cubic meter is given by 

.2=1 
N e 

/ 2   2v 
o x      ' 

(9) 

I 
Expressing Eq. (9) in terms of  p and taking n » v, we have 

- 5 - 



FIG. 2. INTE8RAL PART Of THE EXPRESSION FOR OPTICAL DEPTH 
(SMERQ). PLOTTED AS A FUNCTION OF FREQUENCY, DISTANCE FROM 
THE CENTRAL RAY, AND THE ELECTRON-DENSITY SCALE FACTOR. 

Frequencies (Mc) 

FIG. 3.  SLOWLY VARYING FUNCTION A1(2) (SHERD) PLOTTED 
AS A FUNCTION OF FREQUENCY. 
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lOr Note: 0=0   Centrol   ray only 

0 
U  10 

o. 
a 
o u 
1 
O 

10 

T, «3x10 

10 
10 20 30 40 SO 60 70 

Frequency (Mc) 

FIG.    i.      OPTICAL   DEPTH   VS   FREQUENCY. 

H2 = 1 -  12,1*00 n f'2  p"6  (1 + 1.93  P"
10

), (10) 

where  f is in Mc and p is the distance from the sun's center in 

units of the solar photospheric radius (Fig. 5)-  When p » 1, we have 

the simpler form 

^2 = 1 - 12,U00 n f"2 p" . (11) 

I 
- 7 - 



But the  refractive  index    \i    equals   zero  at the turning point  for the 

central ray.    Therefore,   Eq.   (ll) reduces to 

k,6 n1/6 fVa. (12) 

With fixed n and f, p  is thus determined.  A set of curves of p 
'  o o 

for n = 0.5, 1| 2,   5, 10 and f = 10 to 80 Mc were plotted in 

Fig. 6.  The plot for n = 1 agrees with Smerd's results [Ref. 7].  It 

also agrees with Jaeger's results in hi» Figure 2B [Ref, 8]. 

For other than the central ray, we need another important 

equation 

^apa " a (13) 

(For the derivation of Eq„ (13) see Jaeger's paper [Ref. 8].) Therefore, 

Eq. (l0) can be expressed as 

a s 

1 g - 12,400 n f"2 pa"
6 (1 + 1.93 Pa"

10) = 0. 

For     p    » 1 we can  simplify the above  eicpression to 

(Ik) 

'<L^ 
,  i 

*R„ 
-^   To Earth 

Locus of the turning po ints for a given frequency 

__^      / 
/ / 

Photosphere- 

FIG   5   TRAJECTORIES .\ND TURNING POINTS IN THE SOLAR CORONA 



-u? 

«-*     2 

Turmng point  /»0 for the central roy 

100 

20 »0 

Frequency (Mc) 

70    80 

FIG.   6.      CENTRAL-RAY   TURNING  POINT  VS   FREQUENCY. 

6 2  It 
pa "   a pa 

-2 
12,1+00 n f      = 0 (15) 

For fixed ti and f, the trajectories and loci of turning points can 

be determined. Jaeger [Ref. 8] has plotted various trajectories for 

f = 60 and 100 Mc. 

C.  RADAR CROSS SECTION, a 

■ Let W be the incident power per unit area on the sun. Then the 
2 2 

power incident in a cylinder with radius aR0 is rta R0W.  Let extreme 

rays of the thin cylinder, on returning to free space after refraction 

in the corona, form a cone of small semi-vertical angle 20      (solid 

angle Unja ) (as in Fig. l).  Let the optical depth of each pay be 
EL 

2T, both inside and outside of the corona. Then the returning power 

W, per steradian is e"   jta j^W/Un £3.  Hence the radar cross section 

o is given by 

- 9 - 



1 

km w 
a =   

-2a-   2_ 2/„, 2 
= e   « a Ra /0a 

and —L  = a"27 [ —i (l6) 

for small values of a and 0 .  Strictly speaking, Eq. (l6) should 
SI 

be expressed as 

- e"21  ( 1    r.    - 0. 
«R2 

® 
Vd0 /da / 

The relationship between 0  and a  is, for all a. 

r      dp 
0 = a  (17) 
a    J ,22        2*1/2 

p„ p(n p  - a ; ' 
a 

[Ref. 9].  If we calculated d0 /da at a = 0, we would have the value 

needed for 0  /a in Eq. (l6), in which 0  and a are small quantities. 

The method of evaluating the integrand is given by Jeffreys and 

Jeffreys [Ref. 10]. 

The approximate answer for Eq. (17) is 

9 = h[3.77 I(P + h) - O.96 I(p + 2h) + 1.12 I(p + 3h)] 
3, fcl t* 

+ h  /    l(p)+ arc sin   ,   (l8) 
—' 1.». p + ih 

a 

-1   2 2    2 1/2 
where  l(p) = ap"  (n p  - a ) ' .  In the present calculation, a = 0.1, 

h = 0.1, and the first nine terms of  l(p + nh) were used, where 

n=l, 2, .....9-  Figure 7 shows cr for various values of electron 

temperature, electron density multiplier n, and frequency. 

- 10 - 
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FIG. 7.  CROSS-SECTIONAL AREA VI FREOUENCY. 

D.  SOLAR APPARENT TEMPERATURE, T 

Three different concepts of temperature will be used.  They are: 

1. Te, the electron kinetic temperature, generally called electron 

temperature in this report. 

2. Tv the brightness temperature, defined as the temperature of a 

black body which would yield a specific intensity I of thermal 

radiation e,ual to that observed, i.e., I - B (Tj, «nd at radio 

frequencies B(Tb) is suitably expressed by the Raylelgh-Jeans 

equation, B(T)= 2 k T/X2. 

- 11 



3. Ta, the apparent temperature, defined as the mean brightness 

temperature with respect to the photospheric disk. 

The characteristics of the radiation at a given frequency are 

specified by the brightness distribution over the disk. The brightness 

temperature, T^, of a ray at emergence is given by 

2T 

-T 
'b   J     -"-e T, =  /    T  e  dr (19) 

[Refo 3], where the integration is taken over the whole path of the ray 

through the solar atmosphere. The term T is the optical depth 

measured back from emergence, and T  is its value at the turning 

point.  The factor 2 In the upper limit Is due to the symmetry of the 

trajectory about a radial vector through the turning point. 

In the case of uniform temperature, the solution of the above 

integral of transfer for the ray emerging at a distance aR  from 
® 

the central ray is 

2T 

^U)  « 5. (1- « '") (20) lb(a) 

for rays whose turning points lie in the corona.  For the distribution 

of Tp and Tb with Te = 10
5 K0, n = 1, and f = 18 Mc, see Figures 

7 and 8 In the Bracewell and Preston paper [Ref. 9]. 

Assuming that the distribution of brightness temperature T,,  has 
b 

circular symmetry, then 

T. = 2   \(a>  ada- (21) a    J   b(a; 

Since the integrand of Eq. (21) is quite involved, a simplified method 

was used, as follows: 

1. Calculate the values of t/ »  for different a, from a = 0 to 
b(a) 

a = 2.8, with fixed n, T , and  f. 
'  e 

12 - 



2.  Plot the values of    Tw   v    versus    a,   as  shown in Fig.   8. 

3-  Use graphical  integration to calculate    T   . 

T ,   = Tn   a/ al 11 

12       T2   ^a2     "  al   ) 

Tan  = Tn   K"   "  an-l)'     and 

t. a ^       an 
n=l 

(22) 

E.     ECHO  POWER INTERCEPTED BY THE RECEIVING ANTENNA,   P 
'  r 

Stanford University and the Stanford Research Institute are pre- 

paring a new radar system for solar radar studies, and the MIT Lincoln 

Laboratory will also soon be studying the sun with a very large system 

in Texas.  Characteristics of these systems are as follows: 

b(a) 

■0     al   a2    '3   %    '5    '6     "7 

FIG   8. BRIGHTNESS TEMPERATURE AS A FUNCTION OF DISTANCE FROM THE 
CENTRAL RAY 
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1. STANFORD SYSTEM 

Log-periodic antenna 

Power averages 300 kw 

Gain is approximately 25 db for frequencies from 20 to 60 Mc, 

independent of frequency 

150-ft steerable parabolic-dish antenna 

Power averages 300 kw 
2 p 

Aperture is itR , which is approximately 1650 m 

(it is assumed, for the present, that this antenna is 100 per- 

cent efficient at all frequencies available from the trans- 

mitter--20 - 60 Mc). 

These two systems have the same antenna gain at about ho  Mc.  Thus, 

it is favorable to operate the 150 ft dish for frequencies higher 

than kO  Mc and to operate the log-periodic antenna for lower 

frequencies. 

2, LINCOLN LABORATORY SYSTEM 

Power averages 500 kw 

Gain is approximately 35 db 

This system is to be operated at a fixed frequency, 38 Mc. 

If we assume that the pulse length exceeds the spread in delay 

time of the sun echo, we can use the standard radar equation, 

P G.   1   G A2 

Pr = —2 —2 7  O, (23) 
4äR  UJTR   k* 

where 

P = radiated power in watts, 

G = transmitting-antenna gain, 

G ■ receiving-antenna gain, 

cr = radar cross section of the sun, in square meters, 

R = solar mean distance = I.U9 x 10  meters, and 

A = wavelength in meters. 

For a constant-aperture system, with the same antenna used for trans- 

mission and receiving, Eq  (23) could be rewritten as 

Ik - 



♦4. L Sy«t«m 

■|»«3XI06,K 

«LLSyttem 

20 30 40 

Frequency (Mc) 

50 60 TO 

FIG. 9.  SIGNAL POfER VS FREQUENCY. 

J 7 
GX£ 

(210 

where A = effective antenna area = T .  The values of P  as a 
°    "5   6 r      fi 

function of frequency for n = 1 and T = 5 x 10 , 10 , and 3x10  0K 

are plotted in Fig. 9 for the systems under consideration. 

F.  GALACTIC NOISE, P 
g 

The equation for galactic noise is given by 

- 15 - 



P    = 1+ x 10"21  (F + mt) watts/eps. (25) 

[Ref.  11],  where    F = the receiver-noise factor,   and 

^^o = averaSe galactic-noise factor = 0.25  X2"3. 
In the 20 to 60-Mc  frequency band,  T /T    » F,  and  (25)  reduces to 

P_ = 10"21  X2-3    watts/cps. (26) 

Uhder the assumption of uniform galactic-temperature distribution in the 

sky, all antennas see the same amount of galactic noise, since P  is 

a function of operating frequency only.  P  is plotted in Fig. 10. 

-18 
10 r 

0) 
U    -19 
S 10 

9 

-to 
10 

®   P,+PS(LL System) 

• PS(LL System» 

10 20 30 40 50 

Frequency (Mc) 

(150'dish) 

Ps(l50'(Jish) 

(LogPerioOic) 
p (LogPeriodic 
■ I50'd<»h) 

KS Pertodic) 

60 TO 

1 
FIG. 10.  GALACTIC AND SOLAB-NOISE POWER AT RECEIVER 
VS FREQUENCY. 
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G. SOlAB  NOISE, P 
'  s 

The equation for P  is given "by 
s 

k T      A2 G 
P = —^— Q    watts/cps (27) 

S ^ s       hn 

[Ref. 2] for the log-periodic antenna, and 

T 
a 

P = k A n -» watts/cps (28) 
S S ^ c_ 

A 

for the 150 - ft dish.  In these expressions, 

k = Boltzmann's constant 

ns = solid angle subtended hy the sun's optical disk (steradian), 

T = solar apparent temperature (see Sec. II-D). 

A = antenna aperture in square meters, and 

G = antenna gain. 

From Eq. (27) and (28), we can see that P  for the 150 -ft dish 

varies with respect to frequency much faster than P  for the log- 

periodic antenna.  The reasons are that 
s 

P OC T  for the log-periodic antenna and 
S     cl 

P OC T f2 for the 150 - ft dish, s   a 

Curves for P  versus  f are plotted in Fig. 10 for n = 1 and T 
6       s e 

= 10 OK. 

I.  BAND WIDTH, A f 

It is expected that the corona is rough, fluctuating, and rotating, 

so that the received echo will he spread in frequency.  The center 

17 



frequency of the reflected signal will also be shifted relative to the 

transmitting frequency, because of the earth's orbital motion and rota- 

tion.  This latter effect is of little concern here, since it can easily 

be computed and compensated for in the tuning of the receiver. 

To a first approximation, we assume that the sphere seen at a par- 

ticular operating frequency has a radius of p , where p  is the 

distance of the turning point for a central ray from the center of the 

sun, and the rate of rotation of the corona is that of the solar 

photosphere. Thus the maximum band width is 

2 p «a 
A f - —2—2. t, (29) 

where 

üü    = the angular velocity of the sun at  the equator 
0 -6 
w 2o7 x 10  radians/sec 

c = velocity of light, and 

f = transmitting frequency in cps. 

The values of p  at various frequencies and values of n were obtained 

In Sec. II-B- 

Curves for  A f versus  f  for n = 1 and 5 are plotted in 

Fig. 11.  They are approximately linear, as the variation of  p  with 

respect to frequency is very close to linear (see Fig. 7). 

I.  SIGNAL-TO-NOISE RATIO, S/N 

The signal-to-noise ratio is obtained from the above computed 

quantities from 

P 
S/N =  E  • (30) 

(P + P ) A f s   a' 

Figures 12 and 13 were plotted for the systems mentioned above.  In 

Fig. 12 there are two sets of curves; the solid lines represent n = 1 

and T  = 10 ^j and the dotted lines represent an extra 10 db of solar 

noise as an Indication of the effect of non-quiet sun conditions. 

- 18 - 
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FIG.    11.      BANDWIDTH   VS   FREQUENCY. 

. 

In 1-ig. 13 there are three sets of curvee, representing three 

different electron temperatures-^ = 5 x ID5, IO6, and 3 x IQ6 oK_. 

with n = 1 and 5-  The general characteristice of the curvee in Fig. 13 
are: 

1. The variation for s/N of the log-periodic antenna is almost linear 

with different T  and n. 

2. The S/N ratios for the two Stanford Antennas are equal at about 

38 Mc.  (Note that the noise is not entirely proportional to gain.) 

From Sees. U-F and Il-G we have 

P
8 " 

Ta^ 

and total noise P    = p    + p N s g" 

19 - 
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FIG. 12.  S/N RATIO VS FREQUENCY, WITH SOLAR NOISE 
AS A PARAMETER. 

i 

3- The S/N IS better for higher T .  This effect Is entirely due 

to the large radar cross section for higher T (see Sec. II-C). 

Although T  Increases for higher T , the rate of increase of 

cross section with respect to increasing electron temperature is 

greater than the rate of change of T (see Sees. II-C and II-D). 

k.  The change of n has little effect on s/N(see Sees. II-A and 

II-C). 
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FIG. 13.  S/N RATIO VS FREQUENCY, WITH ELECTRON TEMPERATURES 
AND DENSITIES *S PARAMETERS. 

III.  MAGNETIC FIELD EFFECT 

In the presence of a magnetic field, the incident wave is split 

into two waves of equal strength, the ordinary and extraordinary waves, 
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The refractive index of the ordinary wave is the same as for the free- 

field case.  The refractive index of the extraordinary wave is different; 

the zero refractive index of the extraordinary wave of the central ray 

is 

x = 1 + y    for quasi-transverse (31) 

x = 1 - y    for quasi-longitudinal (32) 

where 2 
o 

x —  p > 

y = fh 
f 

2     V2 

e N \ 
f = plasma-frequency = ,  ,,   ,    . 

V^it e m/ 

eB 
fh = gyro-frequency =   ,   and 

2}tm 

f = wave frequency. 

Assuming a magnetic dipole moment M at the center of the sun, the 

general magnetic field as a function of distance is 

M 
H(p) = -T1 (33) 

*• p 

M 
Ho '-%* (3M 

R - 

where Ho  is the surface field at the equator.  Then the gyro-frequency 

can be expressed as 

fh = 

en H(p) 

2jtm 
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Substituting f , f., and f Into (31) and (32), we can express the 

distance of zero refractive level as 

l.k H I.96 Ho
2 + 12,400  N1/3 

for quasi-transverse 

and 

l.k  H I.96 Ho
2 + 12,^00 W3 

(35) 

for quasi-longitudinal 

(36) 

1 h. ft 
where f is in Mc and N = 10  (l.55 P~ )•  Hohhs [Ref. 12] used the 

quasi-transverse case associated with sunspots and found that the 

turning points for the extraordinary wave are further from the center 

of the sun thah those for the ordinary wave.  It is possible for the 

extraordinary wave to be reflected first and thus to suffer less- 

absorption.  If operating at a high frequency, say above 200 Mc, the 

returned signal is entirely from the extraordinary wave.  The ordinary 

wave is almost totally absorbed before it reaches zero refractive-index 

level.  In addition to the splitting effect, the general magnetic 

fields will also cause a differential in refraction and group velocity. 

These effects will depend on the strength of the field, the angular 

relationship between the wave normal and the direction of the field, 

and the electron density. 

IV.  CONCLUSION 

The method of calculation in Section II indicates roughly the mag- 

nitude of the S/N which should be obtained with a solar radar system 

in a field-free case.  For more accurate calculations of the S/N, it 

is advisable to use a computer.  After more accurate experimental measure- 

ments have been made at several frequencies, it should be possible to 

improve very markedly our knowledge of such poorly known characteristics 
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as scale of roughness and motion in the corona, and the effects of local 

or general solar magnetic fields. The above computations help show the 

radar characteristics required for such measurements and the expected 

performance of several new solar radar systems, 

A complementary approach to active radio studies of the sun Is 

hased on transmission through, instead of reflection from, the corona. 

Such studies are now being conducted, by utilizing the occultation of 

the Crab Nebula, but controlled radiations from space probes or radar 

reflections from planets near superior conjunction should provide even 

more information about the structure of the corona to tens of solar 

radii into the Interplanetary medium [Ref. 13]. 
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